How to Securely Release Unverified Plaintext in Authenticated Encryption
نویسندگان
چکیده
Scenarios in which authenticated encryption schemes output decrypted plaintext before successful verification raise many security issues. These situations are sometimes unavoidable in practice, such as when devices have insufficient memory to store an entire plaintext, or when a decrypted plaintext needs early processing due to real-time requirements. We introduce the first formalization of the releasing unverified plaintext (RUP) setting. To achieve privacy, we propose using plaintext awareness (PA) along with IND-CPA. An authenticated encryption scheme is PA if it has a plaintext extractor, which tries to fool adversaries by mimicking the decryption oracle, without the secret key. Releasing unverified plaintext to the attacker then becomes harmless as it is infeasible to distinguish the decryption oracle from the plaintext extractor. We introduce two notions of plaintext awareness in the symmetric-key setting, PA1 and PA2, and show that they expose a new layer of security between IND-CPA and IND-CCA. To achieve integrity, INT-CTXT in the RUP setting is required, which we refer to as INT-RUP. These new security notions are compared with conventional definitions, and are used to make a classification of symmetric-key schemes in the RUP setting. Furthermore, we re-analyze existing authenticated encryption schemes, and provide solutions to fix insecure schemes.
منابع مشابه
The Design and Analysis of Message Authentication and Authenticated Encryption Schemes ; Ontwerp en analyse van berichtverificatie- en geverifieerde encryptieschema's
Awareness of the significance of securing communication and data has increased dramatically due to the countless examples showing that systems with little or no protection can and will be attacked. Lack of adoption, or improper use of strong cryptographic techniques could be attributed to the fact that cryptographic solutions are not efficient enough, impose impractical constraints on their use...
متن کاملA new authenticated encryption technique for handling long ciphertexts in memory constrained devices
In authenticated encryption schemes, there are two techniques for handling long ciphertexts while working within the constraints of a low buffer size: Releasing unverified plaintext (RUP) or Producing intermediate tags (PIT). In this paper, in addition to the two techniques, we propose another way to handle a long ciphertext with a low buffer size by storing and releasing only one (generally, o...
متن کاملBoosting Authenticated Encryption Robustness with Minimal Modifications
Secure and highly efficient authenticated encryption (AE) algorithms which achieve data confidentiality and authenticity in the symmetric-key setting have existed for well over a decade. By all conventional measures, AES-OCB seems to be the AE algorithm of choice on any platform with AES-NI: it has a proof showing it is secure assuming AES is, and it is one of the fastest out of all such algori...
متن کاملUnderstanding RUP Integrity of COLM
The authenticated encryption scheme COLM is a third-round candidate in the CAESAR competition. Much like its antecedents COPA, ELmE, and ELmD, COLM consists of two parallelizable encryption layers connected by a linear mixing function. While COPA uses plain XOR mixing, ELmE, ELmD, and COLM use a more involved invertible mixing function. In this work, we investigate the integrity of the COLM str...
متن کاملTimed-Release Public Key Based Authenticated Encryption
In this paper, we formally define a notion of timed-release public key based authenticated encryption (TR-PKAE). In addition to standard time-independent security properties (such as IND-CCA security for confidentiality and ciphertext/plaintext unforgeability), TR-PKAE introduces requirements such as timed-release receiver confidentiality (IND-RTR-CCA), which precludes the receiver from decrypt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014